
Therefore, it is shown in the paper that the KCDS permit successful modelling of separa- 
tion flows in supersonic streams of a viscous heat conductive gas. 

NOTATION 

u = (u, v) is the velocity; p is the density; p is the pressure; E is the total energy; 
is the internal energy; T is the temperature; ~ is the dissipative function; ~xx, ~xy, ~yy 

are viscous stress tensor components; c is the sound speed; 7 is the adiabatic index; D, 
are the viscosity and heat conduction coefficients; Pr is the Prandtl number; Re is the Rey- 
nolds number; M is the Mach number; h is the step height; h x, hY are steps of the spatial 
grid; m is the exponent in the Sutherland law; ~w is friction; q is the heat flux; 8 is the 
boundary layer thickness; n is the external normal to the surface; H is the total enthalpy. 
The subscripts w refers to the wall parameters, ~ to the unperturbed stream, and 0 to stagna- 
tion. 
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METHOD OF ~RICAL SOLUTION OF ONE-DIMENSIONALMULTIFRONT STEFAN PROBLEMS 

R. I. Medvedskii and Yu. A. Sigunov UDC 536.42:519.6 

A finite-element method with explicit isolation of fronts is proposed for Stefan 
problems with an arbitrary number of phase transition boundaries. 

In conformity with practical requirement for the mathematical modelling of phase transi- 
tions it is necessary to perform explicit separation of the moving boundaries in the majority 
of cases, that not every numerical method permits doing. For instance, algorithms based on 
an enthalpy formulation [i, 2] or "blurring of the front" [3] that satisfactorily determine 
the temperature field, yield only a rough estimate of the phase front location. Numerous 
literature, for which a brief survey is contained in [4, 5], say is devoted to methods with 
explicit separation of fronts. Recently, several different modifications of application of 
the finite element method with deformable computational grids has been proposed in the direc- 
tion of developing this approach for the solution of problems in domains with nonstationary 
boundaries [6-8]. The common disadvantage of both these and other finite-element methods 
proposed earlier is that different numerical schemes describe heat transmission within a 
single-phase domain and the front motion law, where the order of accuracy of the second sche- 
mes (in direct proximity of the front) is lower, as a rule, then for the first. Besides the 
degradation of the accuracy, the heterogeneity of the computation schemes results in com- 
plication of the algorithm for the solution, that grows strongly as the number of fronts in- 
creases. 
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On the other hand, application of known numerical methods is limited to simple Stefan 
problems that are of interest just as model examples while the numerical solution of more complex 
complex problems of practical nature is exposed slightly. This refers to the greatest degree 
to processes characterizing the presence of several fronts (phases) that originate and vanish 
in the general case. Formulation of a number of such problems in application to permafrost 
science and geology is contained in [9], however, their consideration is limited, in the main, 
to obtaining and investigating self-similar solutions. The numerical solution of a three- 
phase Stefan problem (vapor-water-ice) with two translationally moving fronts, phase origina- 
tion and degeneration, is obtained in [7]. 

A new approach to the numerical solution of one-dimensional problems of Stefan type is 
proposed in this paper. The computational grid being used contains movable, in addition to 
fixed nodes, that correspond to points of a domain with a given temperature. However, the 
equations for each node are derived on the basis of a single integral identity. Hence, a 
system of difference equations is obtained that is homogeneous in structure, with different 
coefficients for the unknowns depending on the kind of node. The algorithm of the solution 
is simplified significantly while certain algorithmic complications are injected only by the 
necessary check on the origination or disappearance of the fronts being tracked. An increase 
in the number of fronts (phases) does not here complicate the scheme of the solution. The 
computational scheme remains unchanged even in the case of modelling phase transformations in 
multilayered media. The proposed method is conservative and its accuracy and efficiency are 
illustrated by numerical examples. 

I. THE INTEGRAL IDENTITY 

Let heat transfer in a medium be described by the one-dimensional heat conduction equa- 
tion 

at = A(x) Ox ~ ' 

in which A(x) = x k (k = 0, i, 2 for the appropriate kind of symmetry). 

Moreover, the energy conservation law, whose expression within the framework of the 
circle of problems under consideration is represented in the form 

OT [ + ~ (x, T) O-~x x=z+o = L (z, T) dz (2) 
- -  Z, (x, T) -~x ~ = = - o  d--~" 

is satisfied at any point x = z(t) (moving or fixed)~ Depending on the nature of the point 
z(t), equation (2) expresses either continuity of the heat flux during the passage through 
a point of the domain (L(z, T) = 0), including the condition on the contact of two media, or 
the known Stefan condition on a phase transition front. In the latter case z(t) corresponds 
to a moving front on which T(z(t), t) = Tm, the phase transition temperature and L(z, T m) 
equals the latent heat of this phase transition. 

The integral identity is derived by analogy with that which has been done in [10]. 

Let xn-~(t)<xn(t)<Xn+l(t) be three arbitrary points of a domain. Let us introduce 
the functions 

X 

~ ( x )  2. x((,) ' ; X(,,) 

Multiplication of the heat conduction equation (i) by A(x)Un_1(x) and integration over the 
domain Xn_ l < x <_ x n yield the identity 

%'7% W X~XT%-- 0 
1 [ C (x, T) O__TT Urt-1 (X) A (x) dx = An~ (x, T)  OT __ 

A ~  i "' ' 8 t  
, - -  X~_ I 

xl$ 1 OT 
A~ ~ ~ ~ (x, T) ~ dx, 

-- Xrt ~I 

(3) 
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in which the right side is obtained by taking the appropriate integral by parts and the nota- 
tion 

Xn+l dq 
A,~ = A (x ,3 ,  & = [ ~ = u,~ (x,~+O = v~ (x,,). 

is introduced to simplify the writing. 

An analogous identity is obtained as a result of multiplying (i) by A(x)Vn(X) and inte- 
grating over the domain x n ! x ! x n + I: 

XT~+l I 

1 0 T  OT + An j" C (x, vn (x) A (x) dx = - -  An~, (x, T) ~ x  ~:=.n+o 

I xr~+l .I T) j r  
Ox 

(4 )  

Combining (3) and (4), taking account of the energy conservation condition (2) for the 
point x = Xn(t), we finally obtain 

[ C (X, T) TOT btr,.-1 (X) A (x) dx ql- 
A~_I .f11 
xn+l 

1 T" OT dx,~ -k h---~ ~ C(x, ) - - ~ v . ( x ) A ( x ) d x + A . L .  -- (5) 
xn dt 

X~+ I X~ 
1 or dx__ l_..._~ S s T) OT dx, 

An 5 ~(x, r) Ox' A._, Ox 
X n xn-I 

where L n = L(xn, T(xn)). The identity (5) is valid for any interior point Xn(t) of the 
domain under investigation, at the same time the identities (3) and (4) are valid for its 
boundary points. 

2. THE NI/MERICAL SCHEME 

Let us give a computational grid represented by a set of nodes of two kinds in the domain 
under investigation. The ordinary fixed nodes given by their coordinates and distributed 
in a space with a certain nonuniform, generally speaking, step comprise one group. The tem- 
perature therein is unknown and determine during the numerical solution. Nodes of the second 
kind are given by a set of values in front of the given temperatures (isotherms) at the 
moving nodes whose coordinates are to be determined. In particular, the nodes of such kind 
are needed for modelling the phase transition boundaries although that is not the limit to 
their usefulness. In a number of cases the application of node-isotherms is more preferable 
since it yields a more optimal distribution of computational grid nodes and thereby permits 
reducing their number without loss of accuracy. This advantage appears most obviously in the 
solution of problems in unbounded domains. 

In contrast to the fixed nodes, the moving modes can occur and vanish as time lapses, 
where isotherm origination in the absence of distributed heat sources is possible only from 
the domain boundaries. Finally, for the approach described the phase transition front is 
represented by a node-isothermwith an appropriate non-zero value of the latent heat (see (2) 
and (5)). 

We approximate the temperature in the segment x n ! x < x n + i bounded by two successive 
nodes (outside the dependence on their type) by a pseudostationary approximation 

v~ (x) u~ (x) (6)  
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TABLE i. Expressions for the Coefficients of Eqs. 
(9) and (i0) Depending on the Kind of Node 

Z n - 1 ~'~;'~1 - 1 Z n  - 1 U~I  - 1 

Zn - ~  zn - 

t 

z,~ VT~ 

Zt? 

Zl~ W n  

A---~+ ~ ~ , 

(An) 2 

(Ap̀ ) 3 

Up. 
Xn+l Xn+ I 

,i ["~ (~)P A (~) dx, V,~ = _.t [~p  ̀(~)P A (,) dx, 
x n XTL 

Xn+ I 

Wr~ = j Ur~ (x) vn (x) A (x) dx 
Xr~ 

such that T(x, t) satisfies the stationary heat conduction equation for a given sy~netry in 
the fixed domain x n ! x ! x n +-i for l(x, T) = const as well as the conditions T(xk, t) = ~k, 

k = n, n + i, where ~k denotes the temperature at a node with the coordinate x k. 

Differentiating (6) with respect to the time yields 

OT �9 v~(x)  �9 u . ( x )  . v . ( x )  Ar  , u . ( x )  Ar ( 7 )  
at - r ~ + r - ~ .  + xp` + x.+~ - - ,  A,~ (A._) 2 A,,+I (A,,) a 

where A~n=~n--~+1 and either ~n, or Xn equals zero for each n depending on the kind of 
n-th node. Letting ~n denote an unknown quantity at the n-th node that equals ~n for an 
isothermic node, we reduced (7) to the form 

at 

w i t h  a p p r o p r i a t e  e x p r e s s i o n s  f o r  t h e  c o e f f i c i e n t s  Sn, Yn from ( 7 ) .  

The e q u a t i o n s  f o r  t h e  n u m e r i c a l  s o l u t i o n  a r e  d e r i v e d  by s u b s t i t u t i n g  t h e  a p p r o x i m a t i o n  
(8)  i n t o  t h e  a p p r o p r i a t e  i d e n t i t y  ( 3 ) - ( 5 ) .  We h e r e  s e t  Cp`=(C(x , ,  ~ O + C ( x ~ + l ,  ~n+1))/2, %p`= 

()~(xp`, %)+)~(xn+~, $~+~))/2 in  each  i n t e r v a l  xn <_ x <_ xn + 1. 

For the internal nodes we obtain the following equations from (5): 

an~'._~ + (bn + dp  ̀+ e.) ~'~ + c,~G~+~ = L- n = 2 . . . .  , N - -  1, (9)  

where e~=A~L~; [n=k~,(~)n+1--t~n)/An--~n-l(~2p`--~n-i)/An-h while the expressions for the remaining 
coefficients of the unknowns are presented in Table I, depending on the kind of node. 

Equations for the boundary nodes can be obtained analogously from (3) or (4). Thus, 
upon giving a known function of the time Q(t) at the left boundary of the heat flux for 
the node n = i, we will have from (4) 

(el -@ dl) ~1 + Cl~2 ~- ~1, f l  = ~ZI. (1~2 - -  I]9I)/A1 @ A1Q (~), (10) 

where (i0) is valid for both a fixed boundary of the domain and for an external phase front 
that occurs during ablation for instance 
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TABLE 2. Coordinates of the Paraffin Solidification 
From x s and Thawing Front x m for the Self-Similar 
Problem 

t, days 20 40 60 80 1oo 

X8~ M 

Xm, M 

--0,3870 
--0,3934 

0,7189 
0,7245 

--0,5506 
~0,5564 

1,0184 
1,0246 

--0,6766 
--0,6814 

1,2481 
1,2549 

--0,7829 
--0,7868 

1,4416 
1,4490 

--0,8767 
--0,8797 

1,6119 
1,6201 

Note. The upper value corresponds to the numerical 
solution and the lower to the exact solution. 

The conditions of the contact of two media are taken into account automatically during 
the derivation of (9). 

Independently of the kind of boundary conditions, the nmber of phase fronts and the 
medium being multilayered, the approximate solution will be determined by a system of ordinary 
differential equations with tridiagonal coefficient matrices 

A = : ( 1 1 )  

. . . . .  7 = (L . . . . .  

The simplest implicit discretization with respect to time reduces (ii) to a system of 
nonlinear difference equation 

p = A ( f ) ( f  - -  - -  A t T  = 6 ,  (12) 

where V ~m+1. ~m =~(mAt). 

The system (12) is solved effectively by the Newton method by neglecting variations of 
the components of the matrix A(~) within one iteration so that each iteration step requires 
the solution of the linear system 

(13) 

where D(~) =A (~)--At/(~) and J(~ = (O[~/O~)i j=1. N is the Jacobi matrix of the vector func- 

tion f and v is the number of the iteration. Exactly as A the matrix J is tridiagonal so 
that an ordinary factorization method is used for (13). The components of the matrix J are 
easily evaluated explicitly. Experiments performed showed a good convergence of the numer- 
ical procedure (13) that requires not more than 2-4 iterations, as a rule, for satisfaction 

of the conditions ~v+l ~v ~n - -~n l  < l O - s "  Let us note that the simple iteration method is not ef- 

fective for the solution of the system (12). 

The implicit difference scheme (12) guarantees stability of the method independently of 
the magnitude of the time step, which is of value, in principle, in the conditions of the 
moving computational grid. 

Let us note that derivation of the system (Ii) for an approximate solution of the circle 
of problem under consideration is analogous to the procedure for constructing numerical 
schemes in the finite element method. In particular, utilization of one system of functions 
as basis and weight functions ({Un(X) , Vn(X) } in this method) is characteristic for the Galer- 
kin method while integration by parts to eliminate gradient terms corresponds to a weak for- 
mulation of the Galerkin method [Ii]. Therefore, the numerical scheme proposed is a finite- 
element scheme and can be obtained formally from the aspect of the finite-element method 
(FEM) by taking account of the computational grid structure used. The difference between the 
proposed and the known finite-element methods of solving Stefan type problems in this sense 
is the most complete utilization of FEM possiblities for construction of numerical equations 
for the unknown moving boundaries. 

In the particular case when the computational grid is represented just by moving nodes 
with a fixed temperature, the numerical solution reduces to tracking the isotherm motion. 
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Such an approach was first proposed in [12] for the numerical solution of heat conduction 
problems. The method elucidated contains a realization of the idea of tracking the isotherm 
on the basis of an implicit finite-element scheme. 

3. NUMERICAL EXAMPLES 

The method was realized in the form of a FORTRAN language program for the ES electronic 
computer and was approved in different problems. The numerical solution of a contact two- 
front Stefan problem that is of interest from both the viewpoint of the numerical solution 
and for practical applications is presented as an illustration. 

Let two bodies having different thermophysical characteristics and different initial 
temperatures T~ and r~ < r~ (for simplicity we assume T~, T ~ = const), be set instantaneously 
into ideal contact with each other. For definiteness, we will consider the first body to be 
in the liquid phase with the solidification temperature T s and the second in the solid phase 
with the melting point T~. At the initial instant of contact t = 0, a certain temperature 
T0(0) is set on the boundary of the two bodies such that T~ > r0(0) > T~. Depending on the 

quantity T0(0) the thermal interaction of the bodies during contact can initiate a phase 
transition in one of them or in both simultaneously upon the satisfaction of the conditions 

T~ ~ T~ > T0(0)> T~ > T~. For specific cases the determination of T0(0) and the conditions 
for origination of the phase transitions can be satisfied on the basis of a self-similar 
solution of the appropriate contact problem for two semi-bounded bodies. 

The origination of two phase transitions occurs simultaneously for example, upon the 
formation of intrusives when magma crystallization is accompanied by melting of the surround- 
ing rock [9, 13], or upon filling a forehole in a frozen rock interval with melted paraffin. 
The numerical examples presented here correspond to this latter case. 

The problem under consideration is described in a one-dimensional formulation by the 
heat conduction equations for melted and solidifying parts of paraffin and thawing and frozen 
soil: 

OTz . = ~zzATI ' a % x % x~; ~OT* = ~z,AT,, x~ < x < c; 
Ot Ot 

OTm 

Ot 
-- ~r~AT,~, c % x < xm; ~OTy = ~jATI,  xm < x < b 

at 

with the boundary and initial conditions 

(14) 

x = a : A ( x )  ----OT~ = O; 
Ox 

x = b : A ( x ) ~  -- O; 

x = c : ~--OT~ = ~m ~OT'~ , T~ = Tm; 
Ox Ox 

t = O : T z ( x ,  O ) = T  O , a ~ x . < c ,  TI (x ,  O)----T~, c ~ x < b ;  

x ,  (o) = x , .  (0) = c 

(i5) 

and conditions on the boundaries of paraffin solidification and thawing frozen rock 

x = x ~ : - - ~ z  OTl _1_~ OT~ = L ~  dx,  T I = T s = T 2 "  
Ox Ox dt ' ' 

OTto c)T s dxm * 
x =  x m : - - ~ m - - - & ~ -  + ~"y . . . . . .  Ox Lm dt , Tr~= T j =  Tm. 

(16) 

In the case of plane-parallel heat flow (A(x) = I) as a + - ~, b + ~, c = 0 the problem 

(14)-(16) has an exact self-similar solution xs=--2as}'t, xm=2am~'t, T~(0, t)= Tm(0, t)=T0. For 
the thermophysical properties taken for the paraffin X s = 0.23 BT/(m[K), Xt =0.14 W/(m.K), 

6 2 6 2 a s = 0.144-i0- m /c, ~ = 0.088"10- m /c, L s = i16.8"I0 e J/m 3, T~ = 45~ the frozen soil 
lm = 1.75 W/(m.K), Xf = 2 W/(m.K), ~m = 0"6"10-6 m2/c, ~f = 0.91"10-6 m2/c, Lm = 61"106 
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J/m 3 (taking account of the 20% icines of the rock), T~ = 0~ and the initial temperatures 

T~ = 0~ and constants governing the self-similar solution have the following values: a s = 
0.152748-10 -3 , a m = 0.281305"10 -2 , T o = 8.83924. 

Let us first estimate the accuracy of the method by solving the problem (14)-(16) in 
the self-similar formulation. Computational grids of different structure were used for a 
more complete illustration of the method in different domains. The cooling and solidifica- 
tion of paraffin were investigated in the segment -i < v < 0 by using a fixed grid with 
the step Ax = 0.i, supplemented by a moving node ~ = ~5~ corresponding to the solidifica- 
tion front. In order not to introduce additional errors associated with the replacement of 
the infinite by a finite domain, the temperature from the exact solution of the problem was 
given on the outer boundary x = -i. A grid of moving isotherms with a temperature step 
A~ = 2.5~ was used for the numerical solution in the domain 0 < x < ~. The boundary isotherm 
~N = -5~ separates the domain x ~ xN(t) that is not subjected to thermal perturbation and 
has a temperature equal to the initial one at each instant. In conformity with this, the 
boundary condition aT/Sx = 0 is given on the moving boundary x = XN(t). 

As is seen, application of a grid of moving isotherms without additional forces permits 
solving the problem under consideration numerically in unbounded domains. The thawing front 
corresponds to the isotherm ~ = 0~ The results of the numerical solution obtained for a 
At = 1 day time step are presented in Table 2 and Fig. i. A comparison shows that the rela- 
tive error of the solution obtained on a sufficiently rough grid does not exceed 2% in the 
domain -i < x < 0 and 1% in the domain 0 < x < ~. 

Let us examine the same problem in another formulation. Let the paraffin be in a cir- 
cular cylinder of unit radius in the neighborhood of an unbounded frozen rock massif. The 
mathematical formulation is given by the problem (14)-(16) for plane-radial symmetry (A(x) = 
x) for a = 0, b + m, c = I. For the same initial data as above, solidification of the paraf- 
fin and thawing of the frozen rock start simultaneously at the time of contact. However, 
by virtue of the boundedness of the heat reserve of the paraffin, as it is exhausted the 
frozen rock thawing is stopped and replaced by the reverse process [14]. In contrast to the 
previous example, the water-ice front motion will be non-monotonic in nature while the tem- 
perature on the paraffin-soil contact changes with time. 

Application of the isothermal grid in the 1 < x < ~ domain is not logical in this case 
since a sharp drop in the temperature at the contact specifies rapid isotherm motion during 
their return in the neighborhood of the contact boundary andits associated necessity to 
execute computations with the very smallest time step, as follows from the computations 
presented. Consequently, the numerical solution for this formulation was obtained on a fixed 
grid (with step Ax = 0.1 in domain 0 < x < I and Ax = 0.2 for 1 < x < s where i iw the 
boundary of the computational domain), supplemented by moving nodes ~ = 45 and 0~ The time 
step was taken equal to At = 1 day. The following approximation for the temperature was 
given on the outer boundary of the computational domain x = i. 

~o 

2 0  

i 

o 

- /  

X 

r 

o / x o 

I T 

~5 

90 gO ~- 

Fig. 1 Fig. 2 

Fig. I. Temperature distribution at the time t = 20 days for 
the self-similar problem: solid line is the exact solution 
and points are the numerical solution x, m; T, ~ 

Fig. 2. Dynamics of phase boundary motion and change in tem- 
perature at the parafin-soil contact for the plane-radial case, 
t in days. 
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lnl/xm , u=er fc  ! - -x~  T(l, t ) = -  l - -x~ [ ] In 1 + 2 -Vt/~} 
x~(1 --u) 

Assignment of such a condition on the outer boundary for the numerical solution of Stefan 
problems in an unbounded domain, that was proposed and approved by numerical experiments in 
[15], permits a more significant (more than twice in this example) diminution in the size 
of the computational domain than for assignment of the condition 8T/Sx = 0 or T(s t) = T (s 0) 
and can be recommended to reduce the computational expenditures. In the problem 
under consideration it is sufficient to take s = 4 to eliminate errors due to passage over 
to a finite computational domain. Certain results of the numerical solution, illustrating 
the dynamics of phase front motion and the change in temperature at the contact, are presented 
in Fig. 2. 

NOTATION 

x is a coordinate, t is time; T is temperature; ~ is thermal diffusivity; ~ is the heat 
conduction coefficient; C is the volume specific heat; L is the heat of phase transition; 
is the nodal temperature; ~ is a generalized variable at the node; At is the time step; N 
is the number of computational grid nodes; A is the Laplace operator. Subscripts: n is for 
the number of computational grid nodes; s is for liquid paraffin; s is for solid paraffin; 
m is for thawed soil; f is for frozen soil. 
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